Thermo-Mechanical Fatigue Crack Growth of RR1000
نویسندگان
چکیده
Non-isothermal conditions during flight cycles have long led to the requirement for thermo-mechanical fatigue (TMF) evaluation of aerospace materials. However, the increased temperatures within the gas turbine engine have meant that the requirements for TMF testing now extend to disc alloys along with blade materials. As such, fatigue crack growth rates are required to be evaluated under non-isothermal conditions along with the development of a detailed understanding of related failure mechanisms. In the current work, a TMF crack growth testing method has been developed utilising induction heating and direct current potential drop techniques for polycrystalline nickel-based superalloys, such as RR1000. Results have shown that in-phase (IP) testing produces accelerated crack growth rates compared with out-of-phase (OOP) due to increased temperature at peak stress and therefore increased time dependent crack growth. The ordering of the crack growth rates is supported by detailed fractographic analysis which shows intergranular crack growth in IP test specimens, and transgranular crack growth in 90° OOP and 180° OOP tests. Isothermal tests have also been carried out for comparison of crack growth rates at the point of peak stress in the TMF cycles.
منابع مشابه
An Empirical Approach to Correlating Thermo-Mechanical Fatigue Behaviour of a Polycrystalline Ni-Base Superalloy
Assessment of thermo-mechanical fatigue behaviour of the polycrystalline nickel alloy RR1000 reveals a significant effect of phase angle on fatigue life. The current paper explores two scenarios: the first where the mechanical strain range is held constant and comparisons of the fatigue life are made for different phase angle tests; and secondly, the difference between the behaviour of In-phase...
متن کاملFinite element analysis of fatigue damage in passenger-car diesel engine cylinder head under cyclic thermo-mechanical loadings
In this article, the thermo-mechanical fatigue lifetime of the cylinder head of a passenger-car diesel engine has been estimated. At the first stage, stress and strain distributions in the cylinder head have been calculated using the two-layer visco-plastic model, available in the ABAQUS software. The calibration of the model was performed, using correlating of simulated hysteresis curves and l...
متن کاملThermal Stress Resistance to Fracture and its Relation to with Resistance to Thermal Fatigue and Shock
Dense Silicon nitride was investigated to determine the effect of its microstructural parameters and densification on thermo-mechanical properties and thermal stress resistance to fracture initiation during a hot or cold mechanical and thermal shock testing. The different materials and microstructures were obtained by changing the parameters such as the type of the powder, additive, forming p...
متن کاملThermal Stress Resistance to Fracture and its Relation to with Resistance to Thermal Fatigue and Shock
Dense Silicon nitride was investigated to determine the effect of its microstructural parameters and densification on thermo-mechanical properties and thermal stress resistance to fracture initiation during a hot or cold mechanical and thermal shock testing. The different materials and microstructures were obtained by changing the parameters such as the type of the powder, additive, forming p...
متن کاملNUMERICAL INVESTIGATION OF CRACK ORIENTATION IN THE FRETTING FATIGUE OF A FLAT ROUNDED CONTACT
The growth of slant cracks by fretting fatigue of a half plane in contact with a flat rounded pad was studied. The mode I and mode II stress intensity factors for cracks of various lengths and directions were calculated using the semi-analytical method of the distribution of dislocations, and their cumulative effect on the crack growth was investigated using the strain energy density criterion....
متن کامل